The prediction of the effective charge number in single-walled carbon nanotubes using Monte Carlo simulation
نویسندگان
چکیده
The ensemble Monte Carlo simulation is used to calculate the electron-wind forces per unit length of single-walled carbon nanotubes under an electric field applied through the nanotube axis. The electronic system and the ionic system are decoupled from each other. The rate of momentum transferred from the electronic system to the ionic system in the form of the emission or absorption of longitudinal acoustic and longitudinal optical phonons is calculated stochastically to determine the electron-wind forces. Complete unabridged energy and phonon dispersion relations are included in order to obtain more accurate results. The effect of the temperature and the electric field magnitude on the induced forces is also taken into account. Results are compared with a prediction based on quantum mechanical integral form that calculates the electron occupation probability based on a modified Fermi–Dirac distribution. Results show a quantitative agreement between the two methods, however, the method proposed in here we believe is more accurate, because it does not make simplifications for the electron occupation probability as in the modified Fermi–Dirac distribution. 2010 Elsevier Ltd. All rights reserved.
منابع مشابه
Computational Investigation on Alcohol Nano Sensors in Combination with Carbon Nanotube; A Monte Carlo and Ab Initio Simulation
Single walled nanotubes (SWNT) are common interested nanovehicle to make biosensors more sensitive.Carbon nanotubes (CNTs) have many distinct properties make them to be exploited to develop the nextgeneration of such nano sensors .The Keto-Enol tautomerization is one of the most common investigatedsubjects of isomerism in this regards, sensors are devices that are able to detect and change the ...
متن کاملStudy on interaction between carbon nanotubes (CNTs) as nano carrier for loading and delivery of Methotrexate
The Methotrexate delivery by carbon nanotubes (CNTs) and the structural changes of drugcombination upon the carbon nanotubes and bio thermodynamic of the drug have been studied by molecularcomputational methods. Computational molecular methods have been fulfilled by molecular mechanics methods with four force field, and semi empirical with all methods. We investigate different param...
متن کاملPhysical adsorption between mono and diatomic gases inside of Carbon nanotube with respect to potential energy
In this paper we have down three theoretical study by using Monte Carlo simulation and Mm+,AMBER and OPLS force field. The calculations were carried out using Hyper Chem professional,release 7.01 package of program. first we have studied the interaction of H2 molecule and He atomwith single-walled carbon nanotube at different temperature. For doing this study we placed H2 andHe in the center an...
متن کاملSeparation-Based Adsorption of H2 from Binary Mixtures inside Single, Double, Triple Walled Boron-Nitride Nanotubes: A Grand- Canonical Monte-Carlo Study
This study investigates the separation based on adsorption of the binary gas mixture of hydrogen withbiogas (gases: CO2, CH4, O2, N2) and inert gases (gases: He, Ne, and Ar) using single-walled ((7,7), (15,15),(29,29), (44,44), (58,58) and (73,73) SWBNNTs), double-walled ((11,11)@(15,15), (7,7)@(22,22) DWBNNTs)and triple walled ((8,8)@(11,11)@(15,15) and (7,7)@(15,15)@(22,22) ...
متن کاملSingle Walled Carbon Nanotube Effects on Mixed Convection heat Transfer in an Enclosure: a LBM Approach
The effects of Single Walled Carbon Nanotube (SWCNT) on mixed convection in a cavity are investigated numerically. The problem is studied for different Richardson numbers (0.1-10), volume fractions of nanotubes (0-1%), and aspect ratio of the cavity (0.5-2.5) when the Grashof number is equal to 103. The volume fraction of added nanotubes to Water as base fluid are lowers than 1% to make dilute ...
متن کامل